Hierarchical and evolved large-scale network structures

Tiago P. Peixoto

Universität Bremen

Berkeley, June 2014

・ロト・(型ト・(ヨト・(型ト・(ロト)))

GLOBAL (OR LARGE-SCALE) STRUCTURE

Modular structure

A PRINCIPLED APPROACH: GENERATIVE MODELS Statistical inference of **stochastic block models**

Traditional: *N* nodes divided into *B* blocks.

Parameters: $b_i \rightarrow$ block membership of node i $e_{rs} \rightarrow$ number of edges from block r to s.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Degree-corrected: Arbitrary degree sequence: $\{k_i\}$

P. W. Holland et al., Soc Networks 5, 109 (1983)

B. Karrer and M. Newman, Phys. Rev. E 83, 016107 (2011)

GENERATIVE MODELS

Two complementary approaches:

Inference of model parameters from empirical data Abstract modelling of network function

Direct bridge between data and functional models, which incorporate large-scale network topology.

INFERENCE VIA MAXIMUM LIKELIHOOD

Microcanonical formulation: $\mathcal{P}(G|\{e_{rs}\}, \{b_i\}) = \frac{1}{\Omega(\{e_{rs}\}, \{b_i\})}$

INFERENCE VIA MAXIMUM LIKELIHOOD

Microcanonical formulation: $\mathcal{P}(G|\{e_{rs}\}, \{b_i\}) = \frac{1}{\Omega(\{e_{rs}\}, \{b_i\})}$

Ensemble entropy: $S(\lbrace e_{rs} \rbrace, \lbrace b_i \rbrace) = \ln \Omega(\lbrace e_{rs} \rbrace, \lbrace b_i \rbrace) = -\ln \mathcal{P}(G|\lbrace e_{rs} \rbrace, \lbrace b_i \rbrace)$

INFERENCE VIA MAXIMUM LIKELIHOOD

Microcanonical formulation: $\mathcal{P}(G|\{e_{rs}\}, \{b_i\}) = \frac{1}{\Omega(\{e_{rs}\}, \{b_i\})}$

Ensemble entropy: $S(\lbrace e_{rs} \rbrace, \lbrace b_i \rbrace) = \ln \Omega(\lbrace e_{rs} \rbrace, \lbrace b_i \rbrace) = -\ln \mathcal{P}(G|\lbrace e_{rs} \rbrace, \lbrace b_i \rbrace)$

$$\mathcal{S} \cong -E - \sum_{k} N_k \ln k! - \frac{1}{2} \sum_{rs} e_{rs} \ln \left(\frac{e_{rs}}{e_r e_s} \right)$$

$$\max_{\{e_{rs}\},\{b_i\}} \ln \mathcal{P} \equiv \min_{\{e_{rs}\},\{b_i\}} \mathcal{S} \quad
ightarrow
ightarrow$$

Inference \leftrightarrow Compression

Minimization of information required to describe the network, *when the model is known*.

 $S \rightarrow$ Information required to describe the network, when the model is known.

- $S \rightarrow$ Information required to describe the network, when the model is known.
- $\mathcal{L} \rightarrow$ Information required to describe *the model*.

- $S \rightarrow$ Information required to describe the network, when the model is known.
- $\mathcal{L} \rightarrow$ Information required to describe *the model*.

$$\mathcal{L} = \underbrace{\ln\left(\!\left(\begin{pmatrix} \left(\begin{smallmatrix} B \\ 2 \\ B \end{pmatrix}\right)\right)}_{\text{Block graph}} + \underbrace{\ln\left(\!\left(\begin{smallmatrix} B \\ N \\ \end{array}\right)\!\right) + \ln N! - \sum_{r} \ln n_{r}!}_{\text{Node partition}} + \underbrace{\sum_{r} n_{r} H(\{p_{k}^{r}\})}_{\text{Degree sequence}}$$

- $S \rightarrow$ Information required to describe the network, when the model is known.
- $\mathcal{L} \rightarrow$ Information required to describe *the model*.

$$\mathcal{L} = \underbrace{\ln\left(\left(\begin{pmatrix} \binom{B}{2} \\ D \end{pmatrix}\right)}_{\text{Block graph}} + \underbrace{\ln\left(\begin{pmatrix} B \\ N \end{pmatrix}\right) + \ln N! - \sum_{r} \ln n_{r}!}_{\text{Node partition}} + \underbrace{\sum_{r} n_{r} H(\{p_{k}^{r}\})}_{\text{Degree sequence}}$$

$$\Sigma = S + \mathcal{L}$$

Total information necessary, without a priori knowledge of the model!

- $S \rightarrow$ Information required to describe the network, when the model is known.
- $\mathcal{L} \rightarrow$ Information required to describe *the model*.

 $\Sigma = S + \mathcal{L}$

Solution \rightarrow model the model

T.P.P., Phys. Rev. X 4, 011047 (2014)

EMPIRICAL NETWORKS

Political blogs (N = 1, 222, E = 19, 027)

EMPIRICAL NETWORKS POLITICAL BLOGS (N = 1, 222, E = 19, 027)

EMPIRICAL NETWORKS

INTERNET (AUTONOMOUS SYSTEMS) (N = 52, 104, E = 399, 625, B = 191)

EMPIRICAL NETWORKS IMDB FILM-ACTOR NETWORK (*N* = 372, 447, *E* = 1, 812, 312, *B* = 717) Áctors USA (30's - 50's) "Golden Age" Asia I urope + Documentaries Latin America USA + Canada anada Films

T.P.P., Phys. Rev. X 4, 011047 (2014)

< □ > < @ > < E > < E > E のQ@

ABSTRACT MODELLING

EXAMPLE: INTERDEPENDENT PERCOLATION

$$u_r = \sum_{s} m_{rs} \left[1 - \hat{\phi}_s f_1^s(1) + \hat{\phi}_s f_1^s(u_s) \right]$$
$$\hat{\phi}_r = 1 - \hat{f}_0^r (1 - \sum_s \hat{m}_{rs} S_s^0) + \hat{f}_0^r(0)$$

Generalization of two-interdependent networks, "network of networks", etc.

T. P. P., S. Bornholdt, PRL 109, 118703 (2012)

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

ABSTRACT MODELLING

EXAMPLE: NOISY BOOLEAN DYNAMICS

- イロト - 4 目 ト - 4 目 ト - 目 - - - のへで

NETWORK EVOLUTION

MAXIMUM ENTROPY ENSEMBLES

How would networks look like if they are optimized according to some criterion, *but are otherwise maximally random*?

Minimization of the free energy:

$$\mathcal{F} = -R - S/\beta$$

 $R \rightarrow$ Fitness criterion $\beta \rightarrow$ Fitness pressure

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

ROBUSTNESS CRITERIA

2. Structural: Percolation with interdependence

$$R = 2 \int_0^1 S(\phi) d\phi$$

 $R \in [0,1]$

 $S \rightarrow$ size of macroscopic component $\phi \rightarrow$ dilution (fraction of nodes not removed)

DYNAMICAL ROBUSTNESS AGAINST NOISE

BOOLEAN NETWORKS AND GENE REGULATION

T. P. Peixoto, PRE 85, 041908 (2012)

-

900

Core-periphery structure!

▶ Independent of the number of blocks, *B*!

Backbones...

T. P. P., S. Bornholdt, PRL 109, 118703 (2012)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 − 釣へ⊙

WITH INTERDEPENDENCE

WITH INTERDEPENDENCE

DEGREE CONSTRAINTS

DEGREE CONSTRAINTS

DEGREE CONSTRAINTS

T. P. P., S. Bornholdt, PRL 109, 118703 (2012)

DEGREE CONSTRAINTS

T. P. P., S. Bornholdt, PRL 109, 118703 (2012)

MULTI-OBJECTIVE OPTIMIZATION

RANDOM FAILURE VS. TARGETED ATTACKS

Pareto-optimal fronts

C. Priester, S. Schmitt, T.P.P., submitted.

CONCLUSION

- ► Stochastic block models (SBM) \rightarrow simple, tractable, general
- Principled inference of large-scale structure of empirical data
- ► Nested SBM → multilevel network structures, high resolution
- ▶ SBMs \rightarrow convenient for abstract modelling
- Maximum entropy SBM ensembles: Null models of robust topologies
- ► Robust topologies are simple!
- Emergence of a core-periphery structure, with a central well-connected backbone, and a sparse periphery.
- More elaborate structures arise when arbitrary constraints or competing criteria are imposed.