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Biological motivation

PATHWAYS IN
HuMAN CANCER

Chemotherapy is a blunt tool that kills
indiscriminately all rapidly dividing
cells.

Cancer physiology is complex.

Need for focused therapies to target
cellular decision making of cancer cells.
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Tensor data

3 pAKT  pERK
£

% .o o® .. °.
8 4 time points x2
@ 2 doses

14 ligands

Five dimensional tensor containing results of 36 x 14 experiments.

The challenge is to determine the signalling mechanisms at play in these
data.
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Clustering experiments

Cluster experiments with similar responses.

Can be difficult to interpret mechanistically.

Need to impose constraints to facilitate
interpretation.
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Rectangular clusters
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Rectangular clusters

Original C| for all 36 C: Cell Lines
T
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New Clustering for all 36 Ca Cell Lines
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Overview of method

Tensor clusterin
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Similarity and data tensors

Notation

Multi-indexed data Z: In this example Z € R30%14x2x3x2,

Flattened tensor: Z. In this example Z € R%4*12,

Similarity matrix: S between the rows of Z. Here S € R%04X%%,

Similarity tensor: The similarity of the data indexed by i = (i1, i) and
i= (U h):
sij =sim (Z(i, iz, -5y ZU1sJ2y 5 ---51)) ER.
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Similarity and data tensors

We summarize these relationships in the following diagram:

similarity of i and j

flatten l reverse flatten

similarity of rows —~

S

Where i and j are the multi-indices of experiments (i.e., cell-type/ligand
combinations).
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Structured clustering

Given S we cluster the experiments indexed by i = (i1, i2), j = (J1,j2), where
i ji€{1,...,36} and ir, o € {1,...,14}.

Partition is encoded in a (36 x 14) x (36 x 14) tensor X with entries

0 if i and j belong to the same cluster,
Xij =
! 1 otherwise,

that are a coarse approximation of the “distance” between i and j. A valid
assignment must fulfil

Reflexivity: xi =0,
Symmetry:  xij = Xji,

Transitivity: 0 < —xik + x5 + xjx < 2.
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Structured clustering

The (36 x 14) x m tensor Y has entries

1 if the data indexed by i belongs to cluster k,
Yik = .
0 otherwise.

We require that
k=1

to ensure that each data item has been assigned to exactly one cluster.

The tensors X and Y are related by equation:

1—x;= Z}’ik)/jk-
k=1
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Two implementations

Need to classify experiments i into rectangular clusters.

Two ways to do this:

Starting from scratch (i.e., no previous clustering information).

Starting from a pre-existing, non-rectangular clustering of experiments.
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Tensor clustering

Two implementations

Starting from scratch:

max (S, (1 — X)) + A(1,X),
subject to by < V - vec(X) < by,

where V encodes the rectangular
constraints:

0 < Xibjp — Xinhjir < 1,

0 < Xinjp — Xihip < 1.

From pre-existing clustering Y:

max (Y,Y),

subject to

Zyij’ = 1a
r=1

-1 S Yikr +yjlr — Yilr S 1.

Both are integer programs that we optimise with a branch and cut algorithm.

Mariano Beguerisse

University of Oxford



Performance
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Results

No prior clustering

Test on HR™ cells and Triple Negative Breast Cancer (TNBC) only.

HR* TNBC

FCELES LSS S Fs®

CEELS LSS *yf eﬁf
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Results

Prior clustering

Test on all cells based starting on initial non-rectangular partitions into 3 and 5
clusters.

Begin from 3 clusters Begin from 5 clusters

cell lines
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Results

Systematic search for models
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Results

Systematic search for models
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Results

Ranking models for each cluster
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Results

Ranking models for each cluster
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Recap
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